Make comparisons between two versions of the same outcome by some grouping variables where trend changes are ranked first by the number of slopes that changed sign and then by the greatest mean absolute percentage change to the smallest.
rank_trend( new_data, old_data, numb_bins = 1L, comparison_var, id_vars, group_vars, trend_var, displace_old_zero = 1e-10 )
| new_data |
|
|---|---|
| old_data |
|
| numb_bins |
|
| comparison_var |
|
| id_vars | Vector of variable names that uniquely identify both new_data and old_data. |
| group_vars | Level to summarize change variables for ranking. group_vars are a subset of id_vars. |
| trend_var |
|
| displace_old_zero |
|
data.table() of ranked merged data.tables, which may be a subset
of the input data.tables. Rank number 1 corresponds to the greatest change
in comparison_var by group_vars between new_data and old_data, rank
number 2 corresponds to the second greatest change in comparison_var by
group_vars, etc. NOTE: Ranks may be duplicated by group if they have the same
values used for ranking.
rank_trend(new_data, old_data_alt, numb_bins = 1L, comparison_var = "outcome", id_vars = c("year", "group"), group_vars = "group", trend_var = "year")#> group year new_outcome old_outcome bin old_slope new_slope sign_change #> 1: b 1 12 4 1 4 -4 1 #> 2: b 2 8 8 1 4 -4 1 #> 3: b 3 4 12 1 4 -4 1 #> 4: c 1 0 1 1 1 0 0 #> 5: c 2 0 2 1 1 0 0 #> 6: c 3 0 3 1 1 0 0 #> 7: a 1 2 2 1 2 2 0 #> 8: a 2 4 4 1 2 2 0 #> 9: a 3 6 6 1 2 2 0 #> pert_diff mean_abs_pert_diff numb_sign_change rank #> 1: -200 200 1 1 #> 2: -200 200 1 1 #> 3: -200 200 1 1 #> 4: -100 100 0 2 #> 5: -100 100 0 2 #> 6: -100 100 0 2 #> 7: 0 0 0 3 #> 8: 0 0 0 3 #> 9: 0 0 0 3