Make comparisons between two versions of the same outcome by some grouping variables and rank them by the greatest mean absolute percentage change to the smallest.
rank_level( new_data, old_data, threshold = 0, comparison_var, id_vars, group_vars, displace_old_zero = 1e-10 )
| new_data |
|
|---|---|
| old_data |
|
| threshold |
|
| comparison_var |
|
| id_vars | Vector of variable names that uniquely identify both new_data and old_data. |
| group_vars | Level to summarize change variables for ranking. group_vars are a subset of id_vars. |
| displace_old_zero |
|
data.table() of ranked merged data.tables, which may be a subset
of the input data.tables. Rank number 1 corresponds to the greatest change
in comparison_var by group_vars between new_data and old_data, rank
number 2 corresponds to the second greatest change in comparison_var by
group_vars, etc. NOTE: Ranks may be duplicated by group if they have the same
values used for ranking.
rank_level(new_data, old_data, threshold = 5, comparison_var = "outcome", id_vars = c("year", "group"), group_vars = "group")#> year group new_outcome old_outcome pert_diff max_abs_pert_diff #> 1: 1 b 12 3 300 300 #> 2: 2 b 8 2 300 300 #> 3: 3 b 4 1 300 300 #> 4: 1 c 0 1 -100 100 #> 5: 2 c 0 2 -100 100 #> 6: 3 c 0 3 -100 100 #> 7: 1 a 2 1 100 100 #> 8: 2 a 4 2 100 100 #> 9: 3 a 6 3 100 100 #> mean_abs_pert_diff rank #> 1: 300 1 #> 2: 300 1 #> 3: 300 1 #> 4: 100 2 #> 5: 100 2 #> 6: 100 2 #> 7: 100 2 #> 8: 100 2 #> 9: 100 2